Justin-刘清政的博客

1-Python中的GIL

2020-03-25

一 GIL是什么

1、GIL的全称是Global Interpreter Lock(全局解释器锁),来源是python设计之初的考虑,为了数据安全所做的决定。

2、每个CPU在同一时间只能执行一个线程(在单核CPU下的多线程其实都只是并发,不是并行,并发和并行从宏观上来讲都是同时处理多路请求的概念。但并发和并行又有区别,并行是指两个或者多个事件在同一时刻发生;而并发是指两个或多个事件在同一时间间隔内发生。)

可见,某个线程想要执行,必须先拿到GIL,我们可以把GIL看作是“通行证”,并且在一个python进程中,GIL只有一个。拿不到通行证的线程,就不允许进入CPU执行。

二 Python2和Python3中GIL的区别

在python2.x里,GIL的释放逻辑是当前线程遇见IO操作或者ticks计数达到100(ticks可以看作是python自身的一个计数器,专门做用于GIL,每次释放后归零,这个计数可以通过 sys.setcheckinterval 来调整,执行字节码 行数),进行释放。

1
2
3
4
5
6
# dis库是python(默认的CPython)自带的一个库,可以用来分析字节码,查看cpu运行轨迹,也就是cpu指令      
import dis
def add(a):
a = a + 1
return a
dis.dis(add)

而在python3.x中,GIL不使用ticks计数,改为使用计时器(执行时间达到阈值后,当前线程释放GIL),这样对CPU密集型程序更加友好,但依然没有解决GIL导致的同一时间只能执行一个线程的问题,所以效率依然不尽如人意。

而每次释放GIL锁,线程进行锁竞争、切换线程,会消耗资源。并且由于GIL锁存在,python里一个进程永远只能同时执行一个线程(拿到GIL的线程才能执行),这就是为什么在多核CPU上,python的多线程效率并不高

多核多线程比单核多线程更差,原因是单核下多线程,每次释放GIL,唤醒的那个线程都能获取到GIL锁,所以能够无缝执行,但多核下,CPU0释放GIL后,其他CPU上的线程都会进行竞争,但GIL可能会马上又被CPU0拿到,导致其他几个CPU上被唤醒后的线程会醒着等待到切换时间后又进入待调度状态,这样会造成线程颠簸(thrashing),导致效率更低

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import threading
total = 0
def add():
global total
for i in range(1000000):
total += 1
def desc():
global total
for i in range(1000000):
total -= 1
thread1 = threading.Thread(target=add)
thread2 = threading.Thread(target=desc)
thread1.start()
thread2.start()

thread1.join()
thread2.join()
print(total)
# 每次执行结果都不一样(如果GIL锁不释放,结果用于为0)
# 所以该代码表面了,在多线程执行过程中,GIL锁被释放掉,被其他线程获取

综上:GIL会根据执行的字节码行数(py2),时间片(py3)和遇到io操作时释放(py2,py3)

三 python的多线程没用?

我们进行分类讨论:

1、CPU密集型代码(各种循环处理、计数等等),在这种情况下,ticks计数很快就会达到阈值,然后触发GIL的释放与再竞争(多个线程来回切换当然是需要消耗资源的),所以python下的多线程对CPU密集型代码并不友好。

2、IO密集型代码(文件处理、网络爬虫等),多线程能够有效提升效率(单线程下有IO操作会进行IO等待,造成不必要的时间浪费,而开启多线程能在线程A等待时,自动切换到线程B,可以不浪费CPU的资源,从而能提升程序执行效率)。所以python的多线程对IO密集型代码比较友好。

四 IO密集型用多线程,CPU(计算)密集型用多进程

每个进程有各自独立的GIL,互不干扰,这样就可以真正意义上的并行执行,所以在python中,多进程的执行效率优于多线程(仅仅针对多核CPU而言)。

所以我们能够得出结论:多核下,想做并行提升效率,比较通用的方法是使用多进程,能够有效提高执行效率

Tags: Python
使用支付宝打赏
使用微信打赏

点击上方按钮,请我喝杯咖啡!

扫描二维码,分享此文章